久久综合九色综合欧洲色-久久综合九色综合桃花-久久综合九色综合网站-久久综合久久综合九色-亚洲影院在线播放-亚洲永久视频

技術文章您現在的位置:首頁 > 技術文章 > Broadpharm基礎篇什么是點擊化學?What is Click Chemistry?

Broadpharm基礎篇什么是點擊化學?What is Click Chemistry?

更新時間:2023-12-06   點擊次數:831次

Click Chemistry is a chemical reaction between pairs of reagents (named click chemistry reagents) to exclusively react with each other under mild conditions and is effectively inert to naturally occurring functional groups such as amine groups. The term "Click Chemistry" was first coined by Sharpless in 2001 in an effort to design a method to easily synthesize molecules under mild conditions and the product can be easily isolated.


Click Chemistry reactions can be categorized into three generations:

(1) Cu(I)-catalyzed Azide-Alkyne Click Chemistry (CuAAC reactions, Figure 1):

Cu catalyzed azide-alkyne click chemistry reactions diagram


The first generation of Click Chemistry involved the reaction of azide with alkyne catalyzed by Cu(I). The copper catalyst allows for this reaction to be carried out efficiently under mild conditions in water whereas the reaction would require high temperature and high pressure without the copper catalyst. Copper catalyzed Click Chemistry has been found to have the second fastest rate constant of 10-100 M-1s-1.

Due to the toxic nature of copper to living structures and biosystems, copper catalyzed Click Chemistry is not a viable method of carrying out reactions in living systems which has led to the development of the following two generations of Click Chemistry.

(2) Strain-promoted Azide-Alkyne Click Chemistry (SPAAC reactions, Figure 2):

DBCO reagent or BCN reagent can be used to perform Click Chemistry with azide molecules without the need of heavy-metal catalysis.


Strain-promoted Azide-Alkyne Click Chemistry reactions diagram

Figure 2: Strain-promoted Azide-DBCO Click Chemistry


The bond strain created by the bond angle of the cyclooctyne (DBCO or BCN) requires less energy for the cyclooctyne to form the (3+2) cycloaddition which releases enthalpic energy caused by the ring strain of the cyclooctyne. This generation does not require copper as a catalyst and it can be used in cell surface and in vivo labeling. The rate constant is 10-2-1 M-1s-1.


(3) Ligation between tetrazine and alkene (trans-Cyclooctene)

Ligation between tetrazine and alkene (trans-Cyclooctene) diagram


The third generation of Click Chemistry is the ligation between tetrazine with trans-Cyclooctene (TCO). The mechanism for this ligation utilizes ring strain from the trans-Cyclooctene and an inverse Diels-Alder reaction between the electron rich trans-Cyclooctene and the electron poor tetrazine. This ligation has been found to be the fastest generation of Click Chemistry thus far with a rate constant of 1-106 M-1s-1. The reaction can also be carried out in vivo in aqueous solution.

Applications of Click Chemistry

Click Chemistry has been widely used in drug discovery, bioconjugation, labeling, and material sciences in the pharmaceutical and biotech industry due to its mild conditions and high selectivity.

Click Chemistry in Drug Discovery

Click Chemistry is utilized in the formation of ADC linkers in antibody drug conjugates. For example, Trodelvy (Sacituzumab Govitecan), also known as IMMU-132 (Figure 4), is an immune target therapy medicine for triple-negative breast cancer which contains sacituzumab and SN-38 bound with a linker. Click Chemistry is used in the formation of the linker to form a triazole that links SMCC to a PEG8 moiety.


structure of trodelvy

Figure 4: Structure of Trodelvy.


Click Chemistry in Joint Cartilage Therapy

Click Chemistry has also been used in cell-based therapy to treat damage in joint cartilage, relieve pain, and improve function. Autologous chondrocyte transplantation targets apoptotic chondrocytes in cartilage which can be identified by a six amino acid peptide, ApoPep-1, and by binding injected healthy chondrocytes from unaffected cartilage. ApoPep-1 carries a trans-Cyclooctene bound by a PEG Linker to apoptotic chondrocytes which can then bind healthy chondrocytes via Click Chemistry to tetrazine to encourage cartilage regeneration (Figure 5).


Diels-Alder diagram



Figure 5: Inverse Diels-Alder Click Chemistry reaction between TCO and tetrazene for joint cartilage therapy


Click Chemistry Tools

As a leading click chemisty reagent supplier worldwide, BroadPharm provides over 500 high purity Click Chemistry Reagents (tools) and Kits with an array of functional groups such as: Azide, Alkyne, DBCO, TCO, Tetrazine, BCN to empower our clients' advanced research and drug development.



靶點科技攜手Broadpharm,最快一周,為您提供點擊化學試劑。授權代理,正品保證,質量無憂,貨期超快,助力您的研究應用。

靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關村生命科學園北清創意園2-4樓2層

© 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:300045  站點地圖  技術支持:化工儀器網  管理登陸

主站蜘蛛池模板: 亚洲福利视频一区二区 | 韩国精品在线观看 | 婷婷色在线视频 | 亚洲激情在线视频 | 成人深夜福利在线播放不卡 | 99re热这里只有精品66 | 国产精品爽爽va在线观看网站 | 狠狠狠色丁香婷婷综合久久俺 | 亚洲欧美另类日本 | 美女教师穿蕾丝内裤动态图 | 国产二区自拍 | 岛国大片免费在线观看 | 日日操干 | 日韩精品中文字幕在线观看 | 亚洲艹| 欧美一区二区三区在线观看不卡 | 亚洲免费不卡 | 99这里只有精品在线 | 青青青在线观看国产精品 | 久久久青草青青亚洲国产免观 | 四虎最新永久免费网址 | 日韩欧美国产高清在线观看 | 久久精品是免费100 久久精品视屏 | 国产91在线视频 | 在线观看视频99 | 黄页网站在线 | 99久久综合国产精品免费 | 最近免费观看高清韩国日本大全 | 国产亚洲综合精品一区二区三区 | 亚洲v视频 | 久久9精品| 岛国大片在线播放免费 | 尹人香蕉网 | 微拍秒拍99福利精品小视频 | 在线视频 二区 | 重口调教女虐女长篇小说 | 日本高清免费观看 | 国产福利小视频在线播放观看 | 日韩欧美一区二区中文字幕 | 毛片在线看免费版 | 亚洲色图二区 |