久久综合九色综合欧洲色-久久综合九色综合桃花-久久综合九色综合网站-久久综合久久综合九色-亚洲影院在线播放-亚洲永久视频

技術(shù)文章您現(xiàn)在的位置:首頁 > 技術(shù)文章 > Broadpharm基礎(chǔ)篇什么是點擊化學(xué)?What is Click Chemistry?

Broadpharm基礎(chǔ)篇什么是點擊化學(xué)?What is Click Chemistry?

更新時間:2023-12-06   點擊次數(shù):870次

Click Chemistry is a chemical reaction between pairs of reagents (named click chemistry reagents) to exclusively react with each other under mild conditions and is effectively inert to naturally occurring functional groups such as amine groups. The term "Click Chemistry" was first coined by Sharpless in 2001 in an effort to design a method to easily synthesize molecules under mild conditions and the product can be easily isolated.


Click Chemistry reactions can be categorized into three generations:

(1) Cu(I)-catalyzed Azide-Alkyne Click Chemistry (CuAAC reactions, Figure 1):

Cu catalyzed azide-alkyne click chemistry reactions diagram


The first generation of Click Chemistry involved the reaction of azide with alkyne catalyzed by Cu(I). The copper catalyst allows for this reaction to be carried out efficiently under mild conditions in water whereas the reaction would require high temperature and high pressure without the copper catalyst. Copper catalyzed Click Chemistry has been found to have the second fastest rate constant of 10-100 M-1s-1.

Due to the toxic nature of copper to living structures and biosystems, copper catalyzed Click Chemistry is not a viable method of carrying out reactions in living systems which has led to the development of the following two generations of Click Chemistry.

(2) Strain-promoted Azide-Alkyne Click Chemistry (SPAAC reactions, Figure 2):

DBCO reagent or BCN reagent can be used to perform Click Chemistry with azide molecules without the need of heavy-metal catalysis.


Strain-promoted Azide-Alkyne Click Chemistry reactions diagram

Figure 2: Strain-promoted Azide-DBCO Click Chemistry


The bond strain created by the bond angle of the cyclooctyne (DBCO or BCN) requires less energy for the cyclooctyne to form the (3+2) cycloaddition which releases enthalpic energy caused by the ring strain of the cyclooctyne. This generation does not require copper as a catalyst and it can be used in cell surface and in vivo labeling. The rate constant is 10-2-1 M-1s-1.


(3) Ligation between tetrazine and alkene (trans-Cyclooctene)

Ligation between tetrazine and alkene (trans-Cyclooctene) diagram


The third generation of Click Chemistry is the ligation between tetrazine with trans-Cyclooctene (TCO). The mechanism for this ligation utilizes ring strain from the trans-Cyclooctene and an inverse Diels-Alder reaction between the electron rich trans-Cyclooctene and the electron poor tetrazine. This ligation has been found to be the fastest generation of Click Chemistry thus far with a rate constant of 1-106 M-1s-1. The reaction can also be carried out in vivo in aqueous solution.

Applications of Click Chemistry

Click Chemistry has been widely used in drug discovery, bioconjugation, labeling, and material sciences in the pharmaceutical and biotech industry due to its mild conditions and high selectivity.

Click Chemistry in Drug Discovery

Click Chemistry is utilized in the formation of ADC linkers in antibody drug conjugates. For example, Trodelvy (Sacituzumab Govitecan), also known as IMMU-132 (Figure 4), is an immune target therapy medicine for triple-negative breast cancer which contains sacituzumab and SN-38 bound with a linker. Click Chemistry is used in the formation of the linker to form a triazole that links SMCC to a PEG8 moiety.


structure of trodelvy

Figure 4: Structure of Trodelvy.


Click Chemistry in Joint Cartilage Therapy

Click Chemistry has also been used in cell-based therapy to treat damage in joint cartilage, relieve pain, and improve function. Autologous chondrocyte transplantation targets apoptotic chondrocytes in cartilage which can be identified by a six amino acid peptide, ApoPep-1, and by binding injected healthy chondrocytes from unaffected cartilage. ApoPep-1 carries a trans-Cyclooctene bound by a PEG Linker to apoptotic chondrocytes which can then bind healthy chondrocytes via Click Chemistry to tetrazine to encourage cartilage regeneration (Figure 5).


Diels-Alder diagram



Figure 5: Inverse Diels-Alder Click Chemistry reaction between TCO and tetrazene for joint cartilage therapy


Click Chemistry Tools

As a leading click chemisty reagent supplier worldwide, BroadPharm provides over 500 high purity Click Chemistry Reagents (tools) and Kits with an array of functional groups such as: Azide, Alkyne, DBCO, TCO, Tetrazine, BCN to empower our clients' advanced research and drug development.



靶點科技攜手Broadpharm,最快一周,為您提供點擊化學(xué)試劑。授權(quán)代理,正品保證,質(zhì)量無憂,貨期超快,助力您的研究應(yīng)用。

靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關(guān)村生命科學(xué)園北清創(chuàng)意園2-4樓2層

© 2025 版權(quán)所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:305311  站點地圖  技術(shù)支持:化工儀器網(wǎng)  管理登陸

主站蜘蛛池模板: 99精品久久秒播无毒不卡 | 高清色黄毛片一级毛片 | 一区二区三区四区亚洲 | www.亚洲视频.com | 国产精品伦理一区二区三区 | 国产特级全黄一级毛片不卡 | 日本网站黄色 | 香蕉高清免费永久在线视频 | 精品国产网 | 国产三级在线观看视频不卡 | 韩国一级| 4虎在线观看 | 精品国产一区二区三区久 | 国产福利精品一区二区 | 国产麻豆va精品视频 | 日本色区| 精品欧美一区视频在线观看 | 黄乱色伦| 91在线视频在线 | 欧美在线操| 狠狠色丁香婷婷综合小时婷婷 | 欧美日韩精彩视频 | 91国在线高清视频 | jizz日本人| 无限免费观看下载在线 | 国产精品伦理久久久久久 | 国产青草视频在线观看免费影院 | 亚洲人成网址在线观看 | 亚洲一区日韩二区欧美三区 | 国产精品亚洲欧美一级久久精品 | 亚洲一区 欧美 | 亚洲天堂欧美 | 国自产在线精品免费 | 日韩每日更新 | 一级做a爱片久久毛片 | 久久成人国产精品二三区 | 色综合天天综合给合国产 | 国产h肉在线视频免费观看 国产huangpian视频免费 | 四虎官网| 麻豆精品视频 在线视频 | 两个人在线观看视频www |